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Fourier syntheses are always affected by series-termination errors, which

generate sets of positive and negative ripples around each main peak in the map.

The interaction among the ripples distorts the profile of the map and moves

peaks away from their correct positions. In a previous paper [Altomare et al.

(2008). Acta Cryst. A64, 326–336] an algorithm was described which reduces the

resolution bias by removing the effects of the ripples in direct space. In this

paper the correction is performed in reciprocal space: the effect of the ripples on

the atomic scattering factors is calculated and subtracted from the usual atomic

scattering factors. The modified scattering factors are used to calculate new

structure factors, from which more accurate electron-density maps may be

obtained. The experimental tests show that the procedure minimizes the effects

of the resolution bias and provides atomic positions that are more accurate than

those provided by traditional approaches.

1. Introduction

One of the major limitations in modern crystallography is the

experimental data resolution (RES). In macromolecular

crystallography RES is rarely atomic (i.e. 1 Å or better), and

usually ranges from tens of angströms to ~2 Å. When only

powder data are available, high-resolution measurements are

often of limited use, particularly for organic structures: this is

partly due to the decay of the atomic scattering and partly to

peak overlap, which limits the accuracy of the full pattern

decomposition. It is not uncommon for even single-crystal

data for small molecules to not extend to atomic resolution

due to the low perfection of the crystal samples.

When RES > 1 Å, both phasing and refinement processes

are difficult. In particular, the electron density obtained as the

Fourier transform of the structure factors shows series-

termination errors: as a consequence, the map is negative in

some regions, and peaks are broadened and surrounded by

positive and negative ripples. The map is then an imperfect

representation of the true electron density.

Let

�ðrÞ ¼
PN
j¼1

�jðr� rjÞ

be the true electron density, describing a crystal structure of N

atoms in the unit cell, and let Fh be its generic structure factor.

If �ðr�Þ is the shape function of the measurable domain of the

reciprocal space [�ðr�Þ ¼ 1 inside the measured domain,

�ðr�Þ ¼ 0 outside it], then the structure factors available

experimentally are

F 0h ¼ Fh�ðr�Þ ð1Þ

and, correspondingly, the electron-density map �0ðrÞ compu-

table in practice is

�0ðrÞ ¼ �ðrÞ � T½�ðr�Þ� ¼ �ðrÞ � �ðrÞ

¼
PN
j¼1

�jðr� rjÞ � �ðrÞ ¼
PN
j¼1

�0jðr� r0jÞ; ð2Þ

where �ðrÞ is the Fourier transform of �ðr�Þ and� denotes the

convolution operation. The maximum of �0jðrÞ will be located

at a position r0j, usually non-coincident with the position rj. The

effects of the series-termination errors on the electron-density

maps were well known even in the early years of modern

crystallography. In particular, Booth (1946) addressed his

attention to the upper limits of the positional errors for atoms

in very simple structures. Cruickshank (1949) investigated the

variance in electron-density maps, generated by measurement

errors and series-termination errors. His results were gener-

alized by Rees (1976), who derived an expression for the

covariance between densities at two points of the electron-

density map by taking into account the experimental data

resolution. Nowadays the most popular way of overcoming the

resolution bias is to calculate difference electron densities:

they are less sensitive to series-termination effects but provide

only models for the difference structure.

Quite recently, two papers [Altomare, Cuocci, Giacovazzo,

Kamel et al. (2008) and Altomare, Cuocci, Giacovazzo,

Moliterni & Rizzi (2008), from now on referred to as papers I

and II] proposed a new practical approach for the resolution-

bias correction. In paper I the mathematical bases of the



method, relying on diffraction physics, were stated. They

require the generalization of the traditional concept of a

Gaussian-like peak: each jth atomic peak is replaced by a two-

component function, extending over the full unit cell,

comprising the main peak and the corresponding ripples. Each

component of the generalized peak is mathematically

modelled in the corresponding existence domain: e.g., the jth

main peak has its own existence domain (say ½A�j), while the

ripples extend over all the rest of the unit cell (say, the domain

½B�j). Accordingly, each peak �0jðr� r0jÞ is represented as the

sum of two functions:

�0jðr� r0jÞ ¼ �
0
½A�j
ðr� r0jÞ þ �

0
½B�j
ðr� r0jÞ; ð3Þ

where �0½A�j ðr� r0jÞ is defined in ½A�j, and represents the jth

main peak, while �0½B�j ðr� r0jÞ, defined in ½B�j, describes its

ripples.

Moreover, the oscillating function �ðrÞ is represented as a

two-component function, according to the following defini-

tions: (a) d� is the distance from the origin of the first �ðrÞ zero

point; (b) ½A�� is the collection of points r for which jrj � d�;

(c) ½B�� is the rest of the unit cell; (d) �½A�� and �½B�� are the parts

of the function �ðrÞ corresponding to the domains ½A�� and

½B��, respectively. According to paper II, the resolution-bias

algorithm finds a more appropriate representation of the

electron density [say �0modðrÞ] starting from the experimental

electron density �0ðrÞ. The algorithm works in direct space and

may be described as follows:

(i) ripple effects are eliminated from the function �0ðrÞ,
giving rise to the intermediate function

�00ðrÞ ¼ �0ðrÞ �
PN
j¼1

�0½B�jðr� r0jÞ �
PN
j¼1

½�0jðr� r0jÞ � c0j�½B�� ðr� r0jÞ�;

ð4Þ

where c0j ¼ �
0ðr0jÞ=�ð0Þ is a scaling factor. The main maxima of

�00ðrÞ are centred on r00j .

(ii) Each main peak �00½A�jðr� r00j Þ is considered to be the

convolution of �jðr� r00j Þ with �½A�� ðrÞ:

�00½A�jðr� r00j Þ � �jðr� r00j Þ � �½A�� ðrÞ: ð5Þ

(iii) Both functions on the right-hand side of equation (5)

are approximated by Gaussian functions: accordingly their

convolution �00½A�jðr� r00j Þ may also be approximated by a

Gaussian function and therefore the desired function �0modðrÞ

may be written as

�0modðrÞ �
PN
j¼1

cjGðr; �j; r00j Þ: ð6Þ

The algorithm is able to estimate the parameters cj and �j as a

function of RES. It was implemented in a modified version of

EXPO2004 (Altomare et al., 2004) and applied to a set of test

structures, most of which were organic with RES > 1 Å, and

which were originally solved by DASH (David et al., 2001) via

simulated-annealing techniques given prior information on

the molecular geometry. The resolution-bias correction

allowed EXPO2004 to solve most of them via direct methods,

without any use of the molecular geometry information. In the

absence of a resolution-bias correction, most of the above

structures were absolutely resistant to any attempt to solve

them using EXPO2004. This paper describes a different

algorithm, also aimed at minimizing the resolution bias, but

working in reciprocal space, through the resolution-dependent

modification of the atomic scattering factors. The new algo-

rithm is successfully applied to simulated cases and to a real

structure.

2. The algorithm

The proposal of an algorithm for correcting resolution bias in

reciprocal space implies a positive answer to the following

questions: may an electron-density map calculated via modi-

fied (resolution-dependent) structure factors show truncation

effects smaller than in the canonical electron-density map?

May it also locate peaks more appropriately? If so, such a map

would display interesting features both in the phasing and in

the refinement steps of the crystal structure analysis.

Let us rewrite equation (1) as follows:

F 0h ¼ Fh�ðr�Þ ¼
PN
j¼1

f 0j ðjr
�jÞ expð2�ih � rjÞ;

where

f 0j ðjr
�
jÞ ¼ fjðjr

�
jÞ�ðr�Þ:

In general, fj includes the thermal factor B: for the sake of

simplicity, in this and in the next section we will assume B =

0 Å2. The difference between f 0j ðjr
�jÞ and fjðjr

�jÞ is shown in

Fig. 1 for Ni at B = 0 Å2, for three different definitions of

�ðr�Þ. The three cutoff values (at jr�j ¼ 0:556, 0.667 and

1.0 Å�1) imply that all the scattering factors f 0 vanish for RES

< 1.8, 1.5 and 1.0 Å, respectively. Correspondingly, the struc-

ture factors will also vanish outside such limits.
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Figure 1
fNi versus jr�j and RES at B = 0 Å2. The sharp vertical lines correspond to
three different �ðr�Þ limits (RES = 1.0, 1.5 and 1.8 Å are shown in black,
red and green, respectively).



Let us calculate the Fourier transform of fNi and f 0Ni at B =

0 Å2. According to Doyle & Turner (1968), any atomic scat-

tering factor may be represented as a constant plus the sum of

four Gaussian functions:

fjðjr
�jÞ ¼ cþ

P4

i¼1

ai expð�bi � jr
�j

2=4Þ:

Its Fourier transform �NiðjrjÞ will represent the electron

distribution in the domain occupied by the Ni atom. In Fig. 2

�NiðjrjÞ is shown by a dashed purple line. If the Fourier

transform of f 0Niðjr
�jÞ is calculated at RES = 1.8, 1.5 and 1.0 Å,

respectively, the curves �0NiðjrjÞ are obtained (the green, red

and black lines, respectively). The presence of ripples suggests

that the resolution cutoff on the scattering factor is the

primary source of their occurrence: they are also not negligible

when RES = 1 Å.

Let us now return to a general crystal structure with N

atoms in the unit cell, for which a molecular model is available.

In order to minimize the resolution-bias effects present in �0ðrÞ
we calculate the inverse Fourier transform of equation (4). For

simplicity we first eliminate the scaling factor c0j from the

calculations: that is obtained by estimating f½B��h for each

atomic species present in the crystal (i.e., via Fourier transform

of the ripple function �j½B��
related to each atomic species). We

obtain

F 00h ¼ F 0h � F½B��h; ð7aÞ

where

F 00h ¼ T�1
½�00ðrÞ�; ð7bÞ

F 0h ¼ T�1
½�0ðrÞ� ¼

PN
j¼1

f 0j expð2�ih � r0jÞ; ð7cÞ

F½B��h ¼ T�1

�PN
j¼1

�j½B��
ðr� r0jÞ

�
¼
PN
j¼1

fj½B��h
expð2�ih � r0jÞ ð7dÞ

and

fj½B��
¼ T�1

½�j½B��
�:

In accordance with equation (4) an electron density corrected

for the resolution bias should be computed via the coefficients

F 00h ¼
PN
j¼1

½ f 0j � fj½B��h
� expð2�ih � r0jÞ: ð8Þ

It is expected that using f 00j ¼ ðf
0
j � fj½B��h

Þ rather than f 0j in the

structure-factor calculation may lead, after the Fourier trans-

form, to an improved electron-density map. Since �½B�� ðrÞ is

centrosymmetric (i.e., it takes equal values in r and in �r) its

Fourier transform f½B�� will assume real (positive or negative)

values.

In Fig. 3 fNi½B��
is shown for RES = 1.8, 1.5 and 1.0 Å (the

green, red and black lines, respectively). In the interval |r*| =

0.1 to 1/RES it increases continuously with |r*| (the disconti-

nuity edges occur at |r*| = RES�1: the edges and the intervals

after them will be commented on in x3): it is negative at low

resolution and positive for higher-resolution reflections. Its

zero point decreases for increasing values of RES.

In Fig. 4 f 00Ni is shown for RES = 1.8, 1.5 and 1.0 Å (the green,

red and black lines, respectively) (the behaviour of f 00Ni beyond

RES will be commented on in x3). In the same figure, for

comparison, fNi(dashed line) is plotted versus |r*| up to RES =

1 Å. We note:

(i) The overall effect of the algorithm is to increase the

scattering amplitude at low |r*| values and decrease it at high

values. In particular, the value of f 00Ni at |r*| = 0 is larger than the

atomic number of Ni (i.e., larger than Z = 28).

(ii) The sharpening of the scattering factor is RES depen-

dent: as a consequence, the form of the atomic peak obtained

by the Fourier transform of f 00Ni will also be RES dependent: in

particular it will be smoother after the resolution-bias

correction.

(iii) The algorithm modifies the form of f 0j by slightly

reducing its overall scattering power. Indeed, the integral of

fNi½B��
is close to zero for any practical value of RES (see Fig.

3).
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Figure 3
fNi½B��

(at B = 0 Å2) extended to RES = 1.0 Å where the curves obtained
for RES = 1.0, 1.5 and 1.8 Å are shown in black, red and green,
respectively.

Figure 2
�NiðrÞ (dashed purple line) at B = 0 Å2. The �0NiðrÞ curves obtained at RES
= 1.8, 1.5 and 1.0 Å are shown in black, red and green, respectively.



The above considerations indicate that the resolution-bias-

correction algorithm associates smaller scattering factors with

high-resolution reflections and larger scattering factors with

low-resolution reflections. That is not equivalent to the effects

of thermal vibration, which depletes the scattering factors of

all the reflections, with larger effects for the high-resolution

reflections. This difference is the key for the success of

the resolution-bias-correction algorithm: enhancing low-

resolution and depleting high-resolution reflections is just the

effect of the Fourier transform of the ripple distribution, and

therefore both concur to a more accurate peak location.

3. Resolution-bias correction beyond RES

In accordance with x2, the minimization of the ripple effects in

the electron-density map requires the modification of the

scattering factors. In particular, each f 0j is modified so as to

reduce the experimentally unobserved fraction of scattering

power (i.e., the area below the fj curve and beyond RES). The

algorithm increases the scattering power at low resolution, in

order to provide peaks in good contrast with the background

of the electron-density map. However, even after the

resolution-bias correction, a fraction of the scattering power

(that beyond RES) is still overlooked: as a consequence, some

residual ripples will still affect the electron-density map. The

above drawback may be overcome by observing that, even if

the geometric characteristics of �½B�� (i.e., frequency, intensity

and location of the ripples) depend only on RES, its Fourier

transform f½B�� does not vanish beyond RES. This permits its

use not only for measured, but also for unmeasured reflec-

tions. It may then be advisable to calculate the right-hand sides

of equations (7) also for higher-resolution reflections.

The calculations are performed as follows. Reflection

indices from RES up to a chosen higher-resolution limit, say

1 Å, are generated, to which vanishing |F| moduli are asso-

ciated. An atom (representative of the jth atomic species) is

located at the origin of the unit cell: then the function �j½B��

obtained at the experimental RES is Fourier transformed up

to 1 Å to obtain fj½B��
. The calculation is repeated for each

atomic species.

In Fig. 3 fNi½B��
is extended from RES = 1.8 and 1.5 Å up to

1 Å resolution (the green and red lines, respectively): for

comparison we also show the fNi½B��
black line when RES =

1.0 Å. The extended lines have a discontinuity at |r*| = 1/RES:

beyond this point fNi½B��
continuously increases with |r*|. In Fig.

4 the resultant f 00Ni curves, extended up to 1.0 Å resolution, are

plotted versus |r*| (in green and red for RES = 1.8 and 1.5 Å,

respectively). For comparison we also plot f 00Ni when RES = 1 Å

(black line) and the true fNi curve (dashed line). In Appendix

A it is shown that the discontinuity in the fNi½B��
curve is the

necessary condition for securing the continuity in the extra-

polation of f 00Ni beyond RES.

It is worth noticing that the extrapolation of the fj½B��
to 1 Å

is not equivalent to the use of the experimental reflections up

to 1 Å. Indeed, in the first case we extrapolate to 1 Å the

Fourier transform of the ripple function corresponding to the

experimental RES and correct for the resolution bias; in the

second case we execute a structure-factor calculation to 1 Å

resolution, without applying the resolution-bias-correction

algorithm. The applications will show that better results are

obtained in the first case.

4. The effects of the temperature factor on the
resolution bias

If for a given crystal structure all the scattering factors natu-

rally vanish at the experimental RES, then the truncation

effects on the electron density also vanish. Indeed, under these

conditions, equation (1) reduces to an identity, F 0h ¼ Fh. A

physical factor intrinsically reducing the resolution bias is the

temperature factor B: when B 6¼ 0 Å2 the overall scattering

power beyond a given RES is smaller than at B = 0 Å2, and

therefore smaller resolution-bias effects on the electron

density are expected. However, in contrast with the

resolution-bias correction, the electron-density peak will show

a smaller contrast with the background.

To involve the thermal factor in the algorithm the following

equation is used instead of equation (8):

F 00h ¼
PN
j¼1

½ðf o
j Þ
0
� fj½B��h

� expð�Bjr�j2=4Þ expð2�ih � r0jÞ; ð9Þ

where f o
j is the scattering factor of the jth atom at rest.

5. Cycling the algorithm

Equations (7)–(8) had already been obtained in paper I, but

they were never applied because the authors were not sure

how useful such equations were. In the following we explain

why. Let us suppose that, from experimental data at resolution

RES, an electron density �0ðrÞ is available from which a

structural model (in terms of atomic positions r0j and thermal

factors Bj) is derived. Since �0ðrÞ is affected by resolution bias,

a new electron density [say �00ðrÞ] may be calculated by using

the structure factors F 00h given by equation (8) as Fourier
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Figure 4
fNi (at B = 0) (dashed purple line). The black line represents f 00Ni when RES
= 1.0 Å. f 00Ni extended to 1 Å resolution from RES = 1.8 and 1.5 Å are
represented by a green and a red line, respectively.



coefficients. The electron density �00ðrÞ is expected to be less

affected by resolution bias: in practice, its peaks are expected

to be located on better positions. In paper I, the authors

guessed that, even if equations (7)–(8) are able to reduce the

ripples, they are expected to introduce new ripples in �00ðrÞ
corresponding to the ‘pseudo-atoms’ related to the modified

scattering factors.

This belief has been checked in our applications (see x6): it

was confirmed, but the ripples in �00ðrÞ are less biased than in

�0ðrÞ. This result suggests that the algorithm may be repeated

more times: i.e., the modified atomic scattering factors may be

modified further by the same algorithm, so as to obtain

structural models more and more free from resolution bias.

To describe the cycling process better let us suppose that we

have already performed the first cycle of the algorithm: i.e., we

have already obtained, through the structure factors defined

by equation (9), an improved electron density �00ðrÞ. Then, for

each jth atomic species, a representative atom is moved to the

origin of the unit cell and the structure factors of this

substructure are calculated by using f 00j ¼ ðf
0
j � fj½B��h

Þ as a

scattering factor. The corresponding electron density will

show, besides the main peak at the origin, the corresponding

ripples (expected to be smaller than those in the first cycle):

their Fourier transform will now be subtracted from f 00j . When

all the above calculations have been made for each atomic

species, then a new electron density �00ðrÞ is calculated, which

is expected to show a better ratio between main peaks and

ripple intensities.

6. The first applications

To check this theory we used two simulated examples and one

real case. The first example aims to show the effects of the

algorithm on the ripples of an isolated atom. The second uses a

small simulated structure to study the reciprocal effects of the

ripples on the atomic positions, and the effects of the algo-

rithm on the experimental electron-density map. The third

example uses a well refined real structure whose electron

density is deformed by the ripples. The effects of the algorithm

on such a map are described at different RES values.

(a) We placed an Ni atom at the origin of a unit cell, and

calculated the ratios between the main peak intensity (IMP)

and the intensities of the first positive (IFPR) and negative

ripple (IFNR) before and after the resolution-bias correction

[that is, in �0ðrÞ and �00ðrÞ, respectively]. In Table 1 we show

IMP, IFNR, IFPR and the ratios IMP/IFNR and IMP/IFPR at

different values of RES. The values of IMP after the resolution-

bias correction (quoted in parentheses) are slightly smaller

than the original values (on average they are 80% of the

original values), but the ratios IMP/IFPR and IMP/IFNR are

always remarkably larger for the corrected electron density

(on average twice as large). The overall result is that �00ðrÞ is a

cleaner electron density than �0ðrÞ.
(b) In a monoclinic unit cell, with parameters a = 12.39, b =

8.93, c = 8.84 Å, � = 90.55	, space group P21/n, we placed a

regular octahedron having Ni as a central atom and six O

atoms as anions (we called this simulated structure NIOCT).

Structure factors were calculated up to RES = 1.8, 1.5 and

1.0 Å, and their moduli were used as observed amplitudes. We

computed �0ðrÞ at the three RES values: as expected, the

coordinates of the main peaks r0j do not coincide with the true

atomic positions rj. Owing to the ideality of our tests (i.e., the

absence of experimental errors) the positional errors

d0j ¼ jrj � r0jj may only be attributed to the resolution bias.

Using equation (8) we computed �00ðrÞ, from which the

positional errors d00j ¼ jrj � r00j j were derived. In Table 2 we

show, for each RES, the discrepancies for Ni (d0Ni and d00Ni) and

the average discrepancies for the anions (hd0ia and hd00ia)

before and after the resolution-bias correction. In general, the

r00j positions are closer to rj than the positions r0j, with one

exception when RES = 1.8 Å. This case will be discussed

below.

The same structures were used to verify the effectiveness of

a cyclic bias correction, as described in x5. In our procedure we

fixed the maximum number of cycles to 30: the procedure

stops when IMP/IFPR and IMP/IFNR become larger than five

times their original value.

In Table 3 the values of IMP, IFNR, IFPR, IMP/IFNR and IMP/

IFPR before and after the application of the cyclic procedure to

the Ni structure are given. As expected, IMP progressively
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Table 1
Comparison of Ni peak and ripple intensities for canonical and
resolution-bias-corrected electron densities.

Values from resolution-bias-corrected electron densities are given in
parentheses. Intensities are in arbitrary units.

RES (Å) IMP IFNR IFPR IMP/IFNR IMP/IFPR

1.0 687 (580) 43 (22) 20.0 (8.8) 16.0 (26.4) 34.4 (65.9)
1.5 252 (206) 21 (10) 9.3 (3.4) 12.0 (20.6) 27.1 (60.6)
1.8 149 (120) 13 (6.4) 6.4 (2.1) 11.5 (18.8) 23.3 (57.1)

Table 2
Positional discrepancies for Ni and anions in NIOCT.

The number of anions at a distance less than 0.6 Å from their true positions
are given in parentheses; the information is not given when all the anions are
quite well located. All other values are given in angströms.

RES d0Ni d00Ni d000Ni hd0ia hd00ia hd000ia

1.0 0.006 0.005 0.004 0.071 0.044 0.012
1.5 0.011 0.007 0.011 0.175 0.127 0.056
1.8 0.007 0.005 0.029 0.340 0.261 (1) 0.117

Table 3
Comparison of Ni peak and ripple intensities for the canonical electron
density and after the cyclic application of the resolution-bias-correcting
algorithm.

Values after the cyclic application of the resolution-bias-correcting algorithm
are given in parentheses. Intensities are in arbitrary units.

RES (Å) IMP IFNR IFPR IMP/IFNR IMP/IFPR

1.0 687 (345) 43 (3.6) 20.0 (0.8) 16.0 (95.8) 34.4 (431.3)
1.5 252 (83) 21 (1.9) 9.3 (0.6) 12.0 (43.7) 27.1 (138.3)
1.8 149 (32) 13 (1.0) 6.4 (0.3) 11.5 (32.0) 23.3 (106.7)



decreases with the cycle number, but the ripple intensities

decrease faster, thus giving rise to augmented ratios IMP/IFPR

and IMP/IFNR. The improvement diminishes with RES.

The corresponding positional discrepancies obtained for

NIOCT at the end of the cyclic procedure are added in Table 2

as d000Ni and hd000ia, respectively. It may be seen that the cyclic

application of the bias correction provides a better location of

the atomic positions and a well behaved background.

Let us now discuss the seemingly dissonant result for hd00ia
obtained when RES = 1.8 Å: i.e., the program is not able to

find more than two peaks in the electron density, the first

related to the Ni position and the second to an O-atom posi-

tion. This may be explained as follows: in accordance with x2,

the resolution-bias correction sharpens the scattering factors

and consequently broadens the electron-density peaks. When

RES = 1.8 Å the modified peaks strongly overlap: in our case

the stronger Ni-atom peak conceals the O-atom peaks. To

better understand the effects, the electron-density map of

NIOCT at RES = 1.8 Å is shown in Fig. 5(a), as calculated by

using the canonical scattering factors. Figs. 5(b) and (c) show

the corresponding maps calculated when the resolution-bias

correction is carried out by one cycle or by the cycled proce-

dure. In all cases only the map intensity values larger than 2�
are plotted. The crosses mark the true positions of the atoms

(obviously, Ni corresponds to the central peak in each map).

We note:

(i) in Fig. 5(a) the O-atom positions are within the selected

electron density, but are clearly displaced from their correct

positions;

(ii) in Fig. 5(b) the Ni-atom peak hides the O-atom peaks;

(iii) in Fig. 5(c) the Ni-atom intensity is reduced by the

algorithm, the light atom peaks are no longer concealed and

occupy more correct positions. In some way, recycling the

algorithm tends to compensate the broadening effect and

leads to a well resolved map.

It is clear from the above results that the data resolution,

thermal factor and phase error are limiting factors for the

resolution-bias-correction algorithm. Low data resolution

may: (i) conceal peaks, which are therefore neglected by the

algorithm (i.e., their ripples are not eliminated); (ii) cause

partial overlapping of bound atoms: the peaks are then

centred on shifted positions, with a consequent shift of the

ripple distribution; (iii) severely misplace peak positions as an

effect of the ripples of other peaks. In (ii) and (iii) r0j strongly

differs from rj and the ripple correction will show positional

bias. Low-resolution effects are particularly severe when

bond distances are small and/or when light atoms are close to

heavy atoms. The results described above indicate that

RES = 1.8 Å may be considered a reasonable limit for the

algorithm.

The thermal agitation broadens the atomic electron density.

When only a rough structural model is available, B is not

known with sufficient accuracy, and the ripple correction may

suffer by a positional bias.

If the phase error is high, the percentage of false and/or

misplaced peaks is high: in this case correcting ripples of a

false molecular model cannot lead to the correct structure.
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Figure 5
NIOCT at RES = 1.8 Å: (a) �0ðrÞ; (b) �00ðrÞ after one cycle of resolution-
bias correction; (c) �000ðrÞ after several cycles of resolution-bias correction.



In spite of the above limitations, the resolution-bias algo-

rithm proved to be highly useful when applied to structure

solution from powder data: average phase errors less than 45	

and RES better than 1.6 Å still allow fruitful use of the

algorithm (see paper II).

We have also checked the usefulness of the resolution-bias

correction beyond RES (see x3). For the sake of brevity we

only give the numerical result for NIOCT when RES = 1.8 Å

and the resolution-bias correction is extended up to 1 Å. Then

d000Ni = 0.003 Å and hd000ia = 0.021 Å. These values may be

usefully compared with those obtained from an electron-

density map directly computed by using the calculated struc-

ture factors up RES = 1 Å. We have d0Ni = 0.006 Å and hd0ia =

0.071 Å, remarkably larger than the values obtained by our

algorithm.

(c) The crystal structure of (2S,6aR,10aR)-6,6,9-trimethyl-

1-oxo-2-phenylseleno-1,2,3,4,6a,7,8,9,10,10a-decahydro-6H-

dibenzo[b,d]pyran (referred to from now on as SELEN),

(Clegg et al., 1980), with 25 non-H atoms in the asymmetric

unit, space group P21, a = 10.30, b = 9.92, c = 10.84 Å and � =

114.62	, was used as a typical example encountered in practice.

The structure was originally solved using single-crystal data

with RES = 0.8 Å and a final crystallographic residual R1 equal

to 0.05, calculated over 2388 symmetry-independent reflec-

tions with |F| larger than 4�(|F|). From the published crystal-

lographic coordinates the structure factors were calculated at

1.0, 1.5 and 1.8 Å resolution: the corresponding phases were

used for computing observed electron-density maps [�0ðrÞ in

our notation]. Owing to the resolution bias the atom positions

moved from their correct positions so providing distorted

models of the structure. The map quality may be analysed by

means of the following criteria (see Table 4): (i) the number of

peak positions in the asymmetric unit, Nd, which are displaced

from the true positions by less than 0.6 Å; (ii) the corre-

sponding average distance hdi; and (iii) the ratio between the

peak intensities corresponding to the last (almost) correctly

positioned atom and to the first wrong peak (ILAST/IWRONG).

We then computed new electron-density maps by using, as

Fourier coefficients, the structure factors obtained via equa-

tion (9): the results are quoted in Table 4 in parentheses. All

the indicators are better when the resolution-bias algorithm is

applied: in particular the smaller values of hdi suggest that the

peaks are better positioned and the largest values of the ratio

(ILAST/IWRONG) suggest that the corresponding electron-

density maps are less noisy.

7. Conclusions

A new algorithm for minimizing the resolution bias in

electron-density maps via reciprocal-space techniques has

been described. The modifications are resolution dependent,

and are designed to reduce the ripple intensities in the

electron-density maps by increasing the atomic scattering at

low diffraction angles and by diminishing it at high angles. A

new electron-density map is computed using the calculated

structure factors as coefficients. The new map provides more

correct atomic positions and a lower background level. It may

be argued that, as in the case for the related algorithm for

reducing the resolution bias via direct-space techniques (see

paper II), it may find useful applications both in phasing and in

refinement steps.

APPENDIX A
Let us suppose that the electron-density map for a one-atom

(located on the origin) structure has been calculated by using

reflections up to RES. The general unique peak, comprising

the main peak �00ðrÞ and the ripple function �0½B�ðrÞ, will be

centred on the origin as well:

�0ðrÞ ¼ �00ðrÞ þ �0½B�ðrÞ:

By hypothesis the Fourier transform f 0ðr�Þ vanishes for

jr�j> 1=RES. This does not occur for f 00ðr�Þ and for f½B�� : in

particular, for jr�j> 1=RES, f½B�� ¼ �f 00ðr�Þ. Thus the discon-

tinuity in the function f 0ðr�Þ guarantees the continuity of the

f 00ðr�Þ curve.
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Table 4
Numerical values of the criteria evaluating the quality of the electron-
density maps for SELEN before and after the application of the
resolution-bias-correction algorithm to �0 density maps computed with
correct phase values.

The symbols are defined in the text. Values obtained using equation (9) are
given in parentheses.

RES (Å) Nd hdi (Å) ILAST/IWRONG

1.0 25 (25) 0.053 (0.038) 2.1 (4.3)
1.5 21 (21) 0.168 (0.124) 1.6 (4.8)
1.8 18 (19) 0.249 (0.212) 2.0 (6.6)


